Sistema di equazioni goniometriche
Un'altra (forte) perplessità.
$sen(x-y)=1$ a sistema con $cos(x+y)=1/2$.
Non ho la minima idea di come risolvere un sistema del genere, mai affrontato prima ( e mai spiegato né intravisto); inoltre, a complicare le cose, si mette il fatto che nel risultato, oltre alla normale costante $k$ appare una costante $h$ (?).
Ho applicato le formule di addizione e sottrazione, ma con ben pochi risultati (è la continuazione che non è chiara).
Che procedimento bisogna usare? E soprattutto, come risolviamo il sistema (e come troviamo la famosa $h$)?
Stando al testo, i risultati sono:
$x=5/12 \pi + (2k+h)\pi$ e $y=-\pi/12+h\pi$ U $x=\pi/12+(2k+h)\pi$ e $y=-5/12\pi+h\pi$.
$sen(x-y)=1$ a sistema con $cos(x+y)=1/2$.
Non ho la minima idea di come risolvere un sistema del genere, mai affrontato prima ( e mai spiegato né intravisto); inoltre, a complicare le cose, si mette il fatto che nel risultato, oltre alla normale costante $k$ appare una costante $h$ (?).
Ho applicato le formule di addizione e sottrazione, ma con ben pochi risultati (è la continuazione che non è chiara).
Che procedimento bisogna usare? E soprattutto, come risolviamo il sistema (e come troviamo la famosa $h$)?
Stando al testo, i risultati sono:
$x=5/12 \pi + (2k+h)\pi$ e $y=-\pi/12+h\pi$ U $x=\pi/12+(2k+h)\pi$ e $y=-5/12\pi+h\pi$.
Risposte
$sen(x-y)=1$ da questa ricavo $x-y=pi/2+2kpi$
$cos(x+y)=1/2$ da questa ricavo $x+y=+-pi/3+2hpi$, in questo caso per il periodo non posso usare di nuovo k perché non è detto che il numero di giri sia lo stesso
ne conseguono i due sistemi
$\{(x-y=pi/2+2kpi),(x+y=+pi/3+2hpi):}$ e $\{(x-y=pi/2+2kpi),(x+y=-pi/3+2hpi):}$
$cos(x+y)=1/2$ da questa ricavo $x+y=+-pi/3+2hpi$, in questo caso per il periodo non posso usare di nuovo k perché non è detto che il numero di giri sia lo stesso
ne conseguono i due sistemi
$\{(x-y=pi/2+2kpi),(x+y=+pi/3+2hpi):}$ e $\{(x-y=pi/2+2kpi),(x+y=-pi/3+2hpi):}$
Capito il senso...un'altra cosa: per trovare i risultati delle due equazioni del sistema iniziale, non devo quindi applicare le formule di addizione e sottrazione (a quanto ho capito). Se non mi sbaglio, infatti, hai giustamente ragionato su quale è l'angolo di coseno $1/2$, eguagliandolo all'espressione in parentesi...ho capito male? (E lo stesso vale per l'altra)
Hai capito benissimo