RADICALI (60383)
[math]
\( \frac{x}{\sqrt{9x-9}}-\frac{\sqrt{x-1}}{3} \) / \(\frac{2x^2+1}{\sqrt{x^2-1}}+\sqrt{x^2-1} \)+\frac{1}{x\sqrt{x+1}}-\frac{10\sqrt{x+1}}{9x^2}
[/math]
potreste risolvermi questa espressione con i radicali?? Non riesco a farla... Grazie mille in anticipo!
\( \frac{x}{\sqrt{9x-9}}-\frac{\sqrt{x-1}}{3} \) / \(\frac{2x^2+1}{\sqrt{x^2-1}}+\sqrt{x^2-1} \)+\frac{1}{x\sqrt{x+1}}-\frac{10\sqrt{x+1}}{9x^2}
[/math]
Risposte
[math]
\( \frac{1}{3\sqrt{x-1}} \) \cdot \(\frac{\sqrt{x^2-1}}{3x^2 \)+\frac{1}{x\sqrt{x+1}}-\frac{10\sqrt{x+1}}{9x^2}
[/math]
\( \frac{1}{3\sqrt{x-1}} \) \cdot \(\frac{\sqrt{x^2-1}}{3x^2 \)+\frac{1}{x\sqrt{x+1}}-\frac{10\sqrt{x+1}}{9x^2}
[/math]
[math]
\frac{\sqrt{x^2-1}}{9x^2\sqrt{x-1}}+\frac{9x-10x-10}{9x^2\sqrt{x+1}}
[/math]
\frac{\sqrt{x^2-1}}{9x^2\sqrt{x-1}}+\frac{9x-10x-10}{9x^2\sqrt{x+1}}
[/math]
[math]
\frac{1}{9x^2}\cdot \( \frac{\sqrt{x-1}\sqrt{x+1}}{\sqrt{x-1}}-\frac{x+10}{\sqrt{x+1}}\)
[/math]
\frac{1}{9x^2}\cdot \( \frac{\sqrt{x-1}\sqrt{x+1}}{\sqrt{x-1}}-\frac{x+10}{\sqrt{x+1}}\)
[/math]
[math]
\frac{1}{9x^2}\cdot \( -\frac{9}{\sqrt{x+1}}\)
[/math]
\frac{1}{9x^2}\cdot \( -\frac{9}{\sqrt{x+1}}\)
[/math]
[math]
-\frac{1}{x^2\sqrt{x+1}}
[/math]
-\frac{1}{x^2\sqrt{x+1}}
[/math]