Proiezione di seno e coseno

lepre561
Salve tramite la foto che ho messo in figura vorrei capire quali sono le proiezioni sull'asse z del vettore verde e di quello rosso. Se non mi trovo esattamente sugli assi non riesco a fare questa proiezione qualcuno mi aiuta?

P.s date voi dei nomi arbitrari se volete ai vettori io li ho distinti in base al colore


Risposte
axpgn
Se ti trovi meglio con i vettori che toccano gli assi, sposta gli assi (o sposta i vettori che fa lo stesso).
Ovviamente paralleli a sé stessi.

lepre561
Forse mi sono espresso male non riesco a capire se il vettore verde sull' asse z è $(verdecostheta)$ oppure no

axpgn
Ripeto: sposta l'asse o i vettori e ti ritrovi come se fossero sugli assi. Prova.

lepre561
intendi cosi? ora come proseguo


axpgn
Come "ora come proseguo"? Non hai detto che la difficoltà consisteva nel fatto che i vettori non toccavano gli assi? :roll:
Se tracci la verticale dalla coda del verde ottieni un triangolo rettangolo quindi ...

lepre561
allora sono giunto alla conclusione che verde proiettato su z sia $-verdecostheta$...per il rosso non riesco a vederlo chiaramente...

axpgn
Devi definire qual è l'angolo formato dal vettore rosso …

lepre561
e come faccio a saperlo?

axpgn
In che senso?
Così come hai disegnato $theta$, disegna quello del vettore rosso; inoltre tieni presente che tutti gli angoli li puoi ricondurre al primo quadrante

lepre561
si ma diciamo che è fondamentalmente questo il mio problema...io so che devo ricondurmi a $theta$ anche per il vettore rosso ma non so come fare...

axpgn
Ma il vettore rosso non forma l'angolo $theta$ … o forse intendi dire che l'angolo rosso è pari all'angolo verde + 90° ? Oppure è un supplementare dell'angolo verde?
Mi sa che dovresti ripassare trigonometria …

Comunque anche per quello rosso non devi fare altro che tracciare la perpendicolare dalla punta del vettore …

Sarebbe più utile però capire il contesto da cui parte questa discussione … spesso non si deve fare altro che "costruire" un triangolo rettangolo, scegliere l'angolo che interessa e calcolarne la funzione trigonometrica che serve … se sei in grado di fare questo (come sembrava dalla tue parole inziali) non cambia niente dove sono posizionati effettivamente i vettori …

Forse sarebbe meglio che postassi un caso concreto …

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.