Problemi "Piano Cartesiano"
Salve,
Lunedì ho un compito di matematica. La prof ci ha assegnato una serie di compito per esercitarci. Però, c'è una tipologià di problema che non capisco. Vi propongo un esempio :)
Avendo un punto A(5;6) e l'O (0;0) trovare un punto equidistante da entrambi.
Le coordinate di A sono a caso nn mi sn basato sui dati effettivi dell'eserici.
Grazie mille per la disponibilità in anticipo :)
Lunedì ho un compito di matematica. La prof ci ha assegnato una serie di compito per esercitarci. Però, c'è una tipologià di problema che non capisco. Vi propongo un esempio :)
Avendo un punto A(5;6) e l'O (0;0) trovare un punto equidistante da entrambi.
Le coordinate di A sono a caso nn mi sn basato sui dati effettivi dell'eserici.
Grazie mille per la disponibilità in anticipo :)
Risposte
Hai un Punto A(a,b) e un Punto B(c,d) il Punto medio di A e B è:
M( (a+c)/2 ; (b+d)/2 )
Nel tuo caso M(5/2;3)
M( (a+c)/2 ; (b+d)/2 )
Nel tuo caso M(5/2;3)
Ops scusate... Ho sbagliato il testo... Il punto equidistante deve trovarsi sull'asse X :S
Se un punto sta sull'asse x, allora ha coordinate
avendo indicato i due punti generici con
Basta allora risolvere l'equazione nella x per trovare le coordinate del punto.
[math]P(x,0)[/math]
. A questo punto basta imporre che la distanza [math]AP=PB[/math]
, e quindi dalla formula della distanza euclidea[math](x_A-x)^2+y_A^2=(x_B-x)^2+y_B^2[/math]
avendo indicato i due punti generici con
[math]A(x_A,y_A),\qquad B(x_B,y_B)[/math]
Basta allora risolvere l'equazione nella x per trovare le coordinate del punto.
Hem, qst regola nn l'abbiamo fatta... mi ricordo che la prof disse di sviluppare un'equazione ma nn era in base a una formula... Chi altre idee? O almeno chi mi può svolgere un esercizio cn qella formula?
grazie :S
grazie :S
Ma scusa, non sai sostituire? Nella "formula" che ho scritto (come la chiami tu) basta scrivere
e quindi
Come vedi, si tratta semplicemente di ragionarci un po'.
[math](5-x)^2+6^2=(0-x)^2+0^2[/math]
e quindi
[math]25-10x+x^2+36=x^2\ \Rightarrow\ -10x=-61\ \Rightarrow\ x=\frac{61}{10}[/math]
Come vedi, si tratta semplicemente di ragionarci un po'.