Problema semicirconferenza
ciao.
mi servirebbe un aiuto per la risoluzione di questo problema di trigonometria.
grazie in anticipo
"data una semicirconferenza di diametro AB=2r, determinare sulla circonferenza un punto E, tale che, costruita la corda AE e tracciata la tangente alla circonferenza nel punto E, la parallela alla corda E, che parte dal punto C, punto medio di OA, si abbia CD=
dava come suggerimento angolo OAE= x
scusate se il testo non è chiaro, ho cercato di ricostruirlo dal disegno, ed era stato scritto da un prof.
grazie
Aggiunto 1 ore 10 minuti più tardi:
please, help me!
nn è urgentissimo, solo che vado in puzza che nn riesco a risolverlo
allora... ho fatto il disegno (ma non saprei come fare a metterlo qui) e fatto un pò di considerazioni, però non capisco come trovare sta x
allora io ho
AO = OE --> triangolo AOE è isoscele
angoli AEO e OAE = x
AOE =
AE =
(ho usato asterisco come per)
da qui in poi non so che fare...
mi era venuto in mente di fare un sistema tra
e
ma non so se va bene e dove vado a parare
Aggiunto 7 minuti più tardi:
volevo aggiungere la foto, ma nn so come fare
Aggiunto 40 minuti più tardi:
ho provato a mettere l'allegato, ma nn si vede!!!
please, help me con questo problema
Aggiunto 21 ore 46 minuti più tardi:
di base non riesco a capire che mi chiede...
cioè come trovare sta x.
cioè io impongo che r√2 sia l'ipotenusa di un triangolo rettangolo isoscele?
Aggiunto 1 ore 13 minuti più tardi:
da come capisco io devo "dimostrare" che CD = r√2
ma come?
devo per forza tirare il ballo seni e coseni..
è un problema di trigonometria.
anche io mi ricordavo che r√2 è l'ipotenusa di un triangolo rettangolo isoscele, ma che lo do come dato di fatto?
cioè dico semplicemente che dato che r√2 è l'ipotenusa di un triangolo rettangolo isoscele con angoli alla base di 45°, allora la mia x è uguale a
non faccio nessun calcolo?
Aggiunto 3 giorni più tardi:
scusatemi ancora...
io non ho capito come risolvere questo problema!!!
Aggiunto 36 secondi più tardi:
scusatemi ancora...
io non ho capito come risolvere questo problema!!!
Aggiunto 4 minuti più tardi:
ciao!
scusate, ma io proprio nn capisco questo problema!!
non devo fare nessun calcolo, solo quella considerazione?!?!?
mi servirebbe un aiuto per la risoluzione di questo problema di trigonometria.
grazie in anticipo
"data una semicirconferenza di diametro AB=2r, determinare sulla circonferenza un punto E, tale che, costruita la corda AE e tracciata la tangente alla circonferenza nel punto E, la parallela alla corda E, che parte dal punto C, punto medio di OA, si abbia CD=
[math]r\sqrt{2}[/math]
con D punto di incontro con la tangente"dava come suggerimento angolo OAE= x
scusate se il testo non è chiaro, ho cercato di ricostruirlo dal disegno, ed era stato scritto da un prof.
grazie
Aggiunto 1 ore 10 minuti più tardi:
please, help me!
nn è urgentissimo, solo che vado in puzza che nn riesco a risolverlo
allora... ho fatto il disegno (ma non saprei come fare a metterlo qui) e fatto un pò di considerazioni, però non capisco come trovare sta x
allora io ho
AO = OE --> triangolo AOE è isoscele
angoli AEO e OAE = x
AOE =
[math]\pi-2x[/math]
= [math]\gamma[/math]
AE =
[math]2r sen\gamma =[/math]
[math]=2r sen(\pi-2x)=[/math]
[math]=2r (sen\pi*cos2x-cos\pi *sen2x)=[/math]
[math]=2r (0*cos2x + 1*2sexcosx)=[/math]
[math]=2r (2senx cosx)=[/math]
[math]=4rsex cosx[/math]
(ho usato asterisco come per)
da qui in poi non so che fare...
mi era venuto in mente di fare un sistema tra
[math]=4rsex cosx=0[/math]
e
[math]x^2+y^2=1[/math]
ma non so se va bene e dove vado a parare
Aggiunto 7 minuti più tardi:
volevo aggiungere la foto, ma nn so come fare
Aggiunto 40 minuti più tardi:
ho provato a mettere l'allegato, ma nn si vede!!!
please, help me con questo problema
Aggiunto 21 ore 46 minuti più tardi:
di base non riesco a capire che mi chiede...
cioè come trovare sta x.
cioè io impongo che r√2 sia l'ipotenusa di un triangolo rettangolo isoscele?
Aggiunto 1 ore 13 minuti più tardi:
da come capisco io devo "dimostrare" che CD = r√2
ma come?
devo per forza tirare il ballo seni e coseni..
è un problema di trigonometria.
anche io mi ricordavo che r√2 è l'ipotenusa di un triangolo rettangolo isoscele, ma che lo do come dato di fatto?
cioè dico semplicemente che dato che r√2 è l'ipotenusa di un triangolo rettangolo isoscele con angoli alla base di 45°, allora la mia x è uguale a
[math]\frac{\pi}{4}[/math]
?non faccio nessun calcolo?
Aggiunto 3 giorni più tardi:
scusatemi ancora...
io non ho capito come risolvere questo problema!!!
Aggiunto 36 secondi più tardi:
scusatemi ancora...
io non ho capito come risolvere questo problema!!!
Aggiunto 4 minuti più tardi:
ciao!
scusate, ma io proprio nn capisco questo problema!!
non devo fare nessun calcolo, solo quella considerazione?!?!?
Risposte
Essendo AE//DC l'angolo DCO = EAO
Consideriamo il triangolo CDC^1 (dove C^1 è il punto medio di OB). Noi sappiamo che
DC = r√2 e CC^1 è uguale al raggio della circonferenza.
r√2 equivale all'ipotenusa di un triangolo rettangolo isoscele avente gli angoli alla base di 45°.
Spero sia giusto così T.T
Consideriamo il triangolo CDC^1 (dove C^1 è il punto medio di OB). Noi sappiamo che
DC = r√2 e CC^1 è uguale al raggio della circonferenza.
r√2 equivale all'ipotenusa di un triangolo rettangolo isoscele avente gli angoli alla base di 45°.
Spero sia giusto così T.T