Problema ellisse e retta
Buon pomeriggio ragazzi, scusate per il disturbo, ma queste cose mi vengono assegnate come compito er casa senza una minima spiegazione... la prima parte del problema, che ho omesso, l'ho risolta... ma.....
Nell'equazione $x^2/(25/4)+y^2/(9/4)=1$
Determinare l'area del rettangolo inscritto nell' elisse, con un lato appartenente alla retta di equazione y=1.
Potete aiutarmi per favore? Grazie in anticipo...
Nell'equazione $x^2/(25/4)+y^2/(9/4)=1$
Determinare l'area del rettangolo inscritto nell' elisse, con un lato appartenente alla retta di equazione y=1.
Potete aiutarmi per favore? Grazie in anticipo...
Risposte
l'ellisse ha come centro di simmetria l'origine degli assi, giusto?
quindi anche il triangolo inscritto avrà come centro l'origine, perciò se un lato sta su $y=1$, il lato ad esso parallelo starà su $y=-1$, ti pare?
poi trovi i punti di intersezione di queste due rette con l'ellisse, e hai i vertici del rettangolo, e non ti serve altro.
quindi anche il triangolo inscritto avrà come centro l'origine, perciò se un lato sta su $y=1$, il lato ad esso parallelo starà su $y=-1$, ti pare?
poi trovi i punti di intersezione di queste due rette con l'ellisse, e hai i vertici del rettangolo, e non ti serve altro.