Problema di geometria, secondo
Calcola l'area e il perimetro di un triangolo rettangolo ABC, sapendo che la mediana AM relativa all'ipotenusa è 5/6 del cateto AB e che la somma di questo e dell'ipotenusa è 64 cm.

Risposte
Il triangolo, essendo rettangolo, è circoscrivibile da una circonferenza di diametro CB, con centro nel suo punto medio, che è M. Di conseguenza, AM=CM perchè raggi della medesima circonferenza.
CB=2AM=10*AB/6 -> AB= 24 cm e CB= 40 cm
Con Pitagora -> AC= 32 cm
2p= 96 cm A= 384 cm^2
CB=2AM=10*AB/6 -> AB= 24 cm e CB= 40 cm
Con Pitagora -> AC= 32 cm
2p= 96 cm A= 384 cm^2
scusa, nn sono riuscito a capire questa parte
CB=2AM=10*AB/6
non è che potresti spiegarmela?
CB=2AM=10*AB/6
non è che potresti spiegarmela?
Se AM=5AB/6 -> 2AM=10AB/6 (ha solo moltiplicato per 2 entrambi i membri perchè sapeva che CB=2AM. In questo modo ha potuto sostituire a "AM direttamente CB --> CB=10AB/6 )
Paola
Paola
ah si, ora ho capito