Invertire una sottrazione al denominatore
Buongiorno!
Un dubbio rapido: mi ritrovo a dover trovare il denominatore comune in una disequazione, e mi farebbe comodo invertire la sottrazione nel secondo:
$ (7x-1)/(6x-1) - 2/(3(1-6x)) $ in modo da ottenere $ 6x-1 $ anche nel prodotto del secondo denominatore.
Qualcuno potrebbe spiegarmi il procedimento lasciando tutto il meno implicito possibile? Grazie!
Un dubbio rapido: mi ritrovo a dover trovare il denominatore comune in una disequazione, e mi farebbe comodo invertire la sottrazione nel secondo:
$ (7x-1)/(6x-1) - 2/(3(1-6x)) $ in modo da ottenere $ 6x-1 $ anche nel prodotto del secondo denominatore.
Qualcuno potrebbe spiegarmi il procedimento lasciando tutto il meno implicito possibile? Grazie!
Risposte
Ciao hydr e molto semplice
Metti un segno meno davanti alla seconda frazione e inverti i termini al denominatore
$+2/(3 (6x-1)) $
Questa e la pratica. Tecnicamente lo fai perché moltiplichi sopra e sotto per $-1$
Metti un segno meno davanti alla seconda frazione e inverti i termini al denominatore
$+2/(3 (6x-1)) $
Questa e la pratica. Tecnicamente lo fai perché moltiplichi sopra e sotto per $-1$
Fantastico! Grazie mille, mazzarri... Sono piccoli dubbi del genere che mi mettono in crisi durante i compiti e sto provando a migliorare da quest'anno.
Tanto per verificare di aver capito bene: se mi fosse utile, potrei scegliere di scrivere $ +2/(-3(1-6x)) $, giusto?
Mi basta cambiare il segno alla frazione e scegliere uno dei fattori del prodotto?
Tanto per verificare di aver capito bene: se mi fosse utile, potrei scegliere di scrivere $ +2/(-3(1-6x)) $, giusto?
Mi basta cambiare il segno alla frazione e scegliere uno dei fattori del prodotto?
O cambiarli a tutti e due ... $a/b=(-a)/(-b)=-a/-b=-(-a)/b$ ... sono tutte equivalenti ...
Cordialmente, Alex
Cordialmente, Alex
"Hydr":
Fantastico! Grazie mille, mazzarri... Sono piccoli dubbi del genere che mi mettono in crisi durante i compiti e sto provando a migliorare da quest'anno.
Tanto per verificare di aver capito bene: se mi fosse utile, potrei scegliere di scrivere $ +2/(-3(1-6x)) $, giusto?
Mi basta cambiare il segno alla frazione e scegliere uno dei fattori del prodotto?
Si esatto
Grazie mille ad entrambi!
