Dubbio su circonferenza...

_annina_11
Ho un dubbio a proposito di circonferenze, che mi e`venuto mentre svolgevo un esercizio...
mi si chiede di calcolare una funzione e l'ho fatto; il risultato viene:
y=sqrt(-4x^2+4x)
il problema ora mi chiede di rappresentare la funzione ottenuta e in teoria la curva dovrebbe essere una circonferenza... a qs punto salta fuori il mio dubbio: nella formula della circonferenza il coefficiente della x nn dovrebbe essere uguale al coefficiente della y???
la formula della curva mi risulta invece: 4x^2+y^2-4x=0...capisco che e`una circonferenza traslata, ma nn capisco perche`i due coefficienti nn sono uguali, come la formula della circonferenza ci dice.
Grazie mille in anticipo per l'aiuto!!
Ciao!!

Risposte
godx3
Forse $4x^2+y^2-4x=0$ non è una circonferenza

Fai una cosa... somma e sottrai al primo membro dell'uguaglianza $+1$ e $-1$ ottenendo così $4x^2 - 4x +1 + y^2 - 1 = 0$

Raccogli il $4$ per i primi tre termini ottenendo $4(x^2 - x + 1/4) + y^2 - 1 = 0$ che diviene quindi $4(x - 1/2)^2 + y^2 = 1$

Effettui un ultima operazione algebrica trasformando l'espressione in $ (x-1/2)^2 / (1/4) + y^2 / 1 = 1$ ...
Noti così che l'espressione in questione è un ellisse di centro $(1/2;0)$ e con i semiassi di lunghezza $1/2$ e $1$

Se doveva essere una circonferenza penso ci sia qualche errore nell'espressione

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.