Disequazioni/equazioni esponenziali parametriche

prova23421
Ciao a tutti!
Avrei bisogno di una mano con questa disequazione esponenziale
$ (2+k)^x > 5 * (-k+1)^x $

CE $ -2
individuo il caso particolare in cui le basi sono uguali
$ 2+k = 5*(-k+1) $

ovvero $ k = 1/2 $

Da qui in poi non so come svolgere la discussione inerente le soluzioni, avrei bisogno di una mano grazie!

Risposte
@melia
Il CE va bene, ma dopo non hai tenuto conto del fatto che 5 non è elevato a potenza.

Direi, prima, di passare al logaritmo naturale il tutto

$ ln (2+k)^x > ln5 +ln (-k+1)^x $ poi portare fuori gli esponenti

$ x*ln (2+k) > ln5 +x*ln (-k+1) $ quindi portare a primo membro i termini con l'incognita

$ x*ln (2+k) -x*ln (-k+1) > ln5 $ poi raccogliere la $x$

$ x(ln (2+k) -ln (-k+1)) > ln5 $

Adesso bisogna calcolare il segno del coefficiente della $x$, cioè $ln (2+k) -ln (-k+1)$, perché quando è positivo, dividendo per il coefficiente la disuguaglianza rimane invariata, mentre quando è negativo si inverte.

Le soluzioni sono
$x>(ln5)/(ln (2+k) -ln (-k+1))$, per $-1/2
$x<(ln5)/(ln (2+k) -ln (-k+1))$, per $-2
Per $k= -1/2$ la disequazione è impossibile (si ottiene $0>ln5$ che è falso).

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.