Dimostrazione di geometria per domani (perfavore)

artistadistrada
1. Da un punto P del diametro AB di una semicirconferenza conduci la perpendicolare ad AB che interseca la semicirconferenza in D. Da un punto C dell'arco DB conduci la tangente alla semicirconferenza che interseca PD in Q. Le rette AC e BC intersecano PD rispettivamente in R e S. Dimostra che:

a. il quadrilatero BPRC è inscrivibile in una circonferenza
b. il quadrilatero APCS è inscrivibile? Se sì, qual è il diametro di tale circonferenza? Perché?
c. Dal punto R conduci la perpendicolare ad AS in E. Dimostra che il quadrilatero ESCR è inscrivibile in una circonferenza. Qual è il suo centro? Perché?


2.Data una circonferenza, traccia due corde congruenti AB e CD che non si intersecano. Detti E ed F i rispettivi punti medi, siano G ed H i punti in cui la retta EF incontra la circonferenza rispettivamente dalla parte di E e dalla parte di F.
Considerato il quadrilatero ABCD siano rispettivamente M, N, P e Q i punti medi degli archi AB, BC, CD, DA.

a. Studia le relazioni che intercorrono tra i segmenti GE, EF ed FH al variare delle corde AB e CD
b. Sotto quali ipotesi la retta GH passa per il centro della circonferenza?
c. Come varia il quadrilatero MNPQ al variare del quadrilatero ABCD?
d. Prova a dimostrare la risposta data nel caso (b).

Grazie.

Risposte
bimbozza
Grazie che? Esprimi i tuoi dubbi invece di scrivere solo i testi e posta un tuo tentativo.

Questa discussione è stata chiusa