Calcolo mediana raggruppamento per classi

Marco1985Mn
Stesso problema con questo esercizio.
Il problema propone diverse fascie d'età con un numero di partecipanti maschili e femminili
Calcolo le frequenze relative percentuali e quelle cumulate.




Essendo il numero delle classi pari ho diviso a metà il numero dei partecipanti maschi ottenendo 52.
pertanto vado a ricercare il valore 52 all'interno delle frequenze cumulate trovando che la mediana per i
maschi si trova nella fascia 17-18
Stesso discorso per le femmine: $96/2 = 48$ quindi la mediana si trova nella frequenza cumulata che contiene il 48 corretto?
se il numero delle classi fosse stato dispari avrei semplicemente scelto la classe dove si trovava il 50%? oppure scelto quella che sta al centro punto e stop?
Grazie mille

Risposte
axpgn
Vedi il mio commento nell'altro thread

Marco1985Mn
"axpgn":
Vedi il mio commento nell'altro thread

Visto Alex, grazie. Deduco che i risultati siano corretti in quanto avendo 104 valori, la mediana si trova a 52. Pertanto prendo la frequenza cumulata che contiene 52

Marco1985Mn
"Marco1005":
[quote="axpgn"]Vedi il mio commento nell'altro thread

Visto Alex, grazie. Deduco che i risultati siano corretti in quanto avendo 104 valori, la mediana si trova a 52. Pertanto prendo la frequenza cumulata che contiene 52[/quote]
No ho detto una cazz..ata.
La metà è 52, quindi devo trovare le frequenze cumulate che contengono 52. Oppure banalmente trovo la frequenza % cumulata che contiene il 50% dei valori

Marco1985Mn
Alex ma in questi casi non posso trovare un valore numerico della mediana ma posso solamente sapere in quale classe si trova giusto?

Noodles1
Non proprio. Per i maschi:

$16+2/18*17$

e per le femmine:

$16+2/26*22$

Marco1985Mn
"Noodles":
Non proprio. Per i maschi:

$16+2/18*17$

e per le femmine:

$16+2/26*22$


:shock: :shock: :shock: ehm spiegati meglio please perchè sono un pò confuso. Questi che conti sarebbero? quello che ho scritto prima è corretto almeno come posizionamento della mediana?

Noodles1
Intanto correggo. Per i maschi:

$16+1/18*17$

e per le femmine:

$16+1/26*22$

Ad ogni modo, una volta individuata la classe (mi sembra che tu sappia farlo), si tratta di determinare un valore preciso mediante una proporzione. Per i maschi:

$(x-16):(17-16)=(52-35):(53-35)$

Marco1985Mn
il 18 e il 26 capisco da dove vengono ma il 17 e il 22 proprio no. Potresti farmi vedere la proporzione?

Noodles1
Ho aggiunto la prima proporzione. Lascio a te la seconda.

axpgn
Per i maschi hai 104 istanze quindi la mediana è tra 52 e 53: entrambe queste posizioni sono occupate dalla classe 16-17 che quindi è la classe mediana.
Rifai lo stesso per le femmine.

Marco1985Mn
"axpgn":
Per i maschi hai 104 istanze quindi la mediana è tra 52 e 53: entrambe queste posizioni sono occupate dalla classe 16-17 che quindi è la classe mediana.
Rifai lo stesso per le femmine.

ok quindi 48 e 49 contenuti nella stessa classe perchè il cumulato relativo è 52 che contiene questi due valori

Marco1985Mn
"Noodles":
Ho aggiunto la prima proporzione. Lascio a te la seconda.

non ci sarei mai arrivato. Metabolizzo e poi cerco di dare una risposta sensata :D

DavidGnomo1
"Marco1005":
[quote="Marco1005"][quote="axpgn"]Vedi il mio commento nell'altro thread

Visto Alex, grazie. Deduco che i risultati siano corretti in quanto avendo 104 valori, la mediana si trova a 52. Pertanto prendo la frequenza cumulata che contiene 52[/quote]
No ho detto una cazz..ata.
La metà è 52, quindi devo trovare le frequenze cumulate che contengono 52. Oppure banalmente trovo la frequenza % cumulata che contiene il 50% dei valori[/quote]

Se ho capito bene la mediana la trovi, per maschi e femmine, nella classe 16-17. Giusto? Poi cosa vuoi calcolare?

Marco1985Mn
In teoria dovrei trovare la differenza tra tutti i valori dei maschi rispetto alla media e poi la stessa cosa per le femmine. Domanda idiota: ma la media quando ho valori suddivisi per classi non può che essere il totale dei valori diviso il numero di classi no?

axpgn
No. Perché? E come si calcola?

Marco1985Mn
"axpgn":
No. Perché? E come si calcola?

Eh bella domanda. Ho 104 partecipanti maschi, mi verrebbe normale dire quanti partecipanti ci sono mediamente in ogni classe. Ma se non corretto non saprei come ragionare Alex

Marco1985Mn
Sono andato a rivedere un pò di teoria porca miseria.
Devo fare una media ponderata con la metà della classe moltiplicata per la frequenza assoluta

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.