AIUTO! PROBLEMA DI GEOMETRIA

lucasfregola
In un parallelogramma ABCD, il lato AB è il doppio del lato BC. Prolunga BC, dalla parte di C, di un segmento CE=BC. Dimostra che AE è la bisettrice dell'angolo BAD e che, comunque scelto un punto P su AB, il segmento PE sta dimezzato dal suo punto d'intersezione con CD.

Risposte
carlogiannini
Se prolunghi in lato BC di un segmento uguale, allora
BE = 2BC = AB
quindi ABE è metà rombo e nel rombo la diagonale è anche bisettrice.
Poi, la retta DC è parallela alla retta AB, quindi stacca sulle rette trasversali segmenti proporzionali
quindi:
se la retta DC taglia a metà BE (per costruzione), taglia a metà qualsiasi altro segmento EP, comunque tu prenda il punto P sulla retta AB.
Segue disegno

Aggiunto 15 minuti più tardi:

Disegno
EG : GP = EC : CB
siccome
EC = CB (per costruzione)
allora
EG = GP
Fammi sapere se sono stato chiaro
Carlo

lucasfregola
Sisi grazie mille per l'aiuto

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.