Problema teorema di pitagora geometria

Like24
Salve ora vi scrivo la traccia del mio problema che non riesco proprio a svolgere.
mi servirebbe solo un imput per avviarmi allo svolgimento di questo problema:

L'area del triangolo abd è 3024 cm quadrati e un cateto è i $7/24$ dell'altro.calcola l'area del trapezio sapendo che CH misura 50.4 cm

grazie in anticipo

Risposte
gio73
Ciao like24, forse manca la figura, che relazione c'è tra triangolo e trapezio?

Like24
Ora faccio con Paint la figura e ve la mostro.

Like24
Ecco la foto

gio73
Ciao Like 24, se raddoppi l'area del tringolo ottieni l'area di un rettangolo che ha per dimensioni i tuoi cateti, sapendo che i cateti sono uno i $7/24$ dell'altro significa che puoi dividere il rettangolo in $7*24$ quadratini tutti ugueli il cui lato è il segmentino che moltiplicato per 7 dà una dimensione e moltiplicato per 24 l'altra. A dopo!

Erwin Rommel1
Se parli di cateti significa che il triangolo ADB è rettangolo in D

Per capire meglio dovresti girare il triangolo




Vedi che il doppio dell’area di questo triangolo è l’area di un rettangolo (ACBD) ossia 6048 cm2

Se un lato è 7/24 dell’altro, suddividi il lato DA in 7 tratti uguali e il tratto DB in 24 tratti uguali. In questo modo l’area del rettangolo ACBD sarà suddivisa in 24 * 7 = 168 quadrati uguali

Se dividi l’area del rettangolo per il numero di quadrati ottenuti ottieni l’area di ciascun quadrato

6048 / 168 = 36 cm2

Da cui trovi il lato del quadrato di 6 cm

Adesso il lato DA è lungo 7 di questi tratti ossia 7 * 6 = 42 cm e il lato DB 24 * 6 = 144 cm

Con il Th di Pitagora trovi il lato AB

AB = Radicequadra (42^2 + 144^2) = 150 cm

Adesso riprendi il triangolo ADB inserito nel trapezio la sua area è sempre 3024 cm2 calcolata con AB * DH / 2

Da cui ricavi DH (altezza del triangolo) = 6048 / 150 = 40,32 cm




Ora considera il triangolo HCK : conosci il lato CK = DH che è l’altezza, conosci il lato CH (dato fornito) 50,4 cm, puoi con Th di Pitagora trovare il alto HK

Srqt (50,4^2 - 40,32^2) = 30,24 cm

Il lato HK è anche la base minore del trapezio, da cui puoi calcolare l’area del trapezio ABCD

= (150 + 30,24) * 40,32 / 2 = 3633,63 cm2

Like24
Grazie Erwin Rommel mi sei stato d'aiuto

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.