Problema di geometria per la mia amica
un cilindro è stata praticata una cavità a forma di cono la cui base è concentrica alla base del cilindro.il raggio del cilindro misura 21cm e l'altezza 15cm.il raggio del cono e 2/3 del raggio del cilindro e l'apotema è 7/6 dell'altezza del cilindro.Calcola il volume e l'area totale del solido.4
Grazie.
Grazie.
Risposte
Per prima cosa calcoliamo i dati mancanti:
.
.
Ora calcoliamo
.
.
La Superficie Totale del Solido si ottiene sommando:
Area Base del Cilindro (sotto)
Area Laterale del Cilindro
Area Laterale del Cono
Corona Circolare (sopra) che si trova sottraendo l'Area Base del Cono dall'Area Base del Cilindro, perché la Base del Cono è più piccola della Base del Cilindro.
A te questi conticini.
.
Fammi sapere se è chiaro.
Carlo
.
[math]raggio\ cono\ =\ \frac{2}{3}(21)\ =\ 14\\\\apotema\ cono\ =\ \frac{7}{6}(15)\ =\ 17,5\\altezza\ cono=\ (Pitagora)\ =\sqrt{17,5^2-14^2}=\sqrt{306,25-196}=10,5[/math]
..
Ora calcoliamo
.
[math]Volume\ del\ solido = Volume\ Cilindro - Volume\ cono\\
Volume\ Cilindro =(21^2\cdot 3,14)\cdot 15=441\cdot 3,14\cdot 15=20771,1\\Volume\ Cono=\frac{(14^2\cdot 3,14)\cdot 10,5}{3}=\frac{196\cdot 3,14\cdot 10,5}{3}=2154,04\\Volume\ Solido=20771.1-2154,04=18617,06\\[/math]
.Volume\ Cilindro =(21^2\cdot 3,14)\cdot 15=441\cdot 3,14\cdot 15=20771,1\\Volume\ Cono=\frac{(14^2\cdot 3,14)\cdot 10,5}{3}=\frac{196\cdot 3,14\cdot 10,5}{3}=2154,04\\Volume\ Solido=20771.1-2154,04=18617,06\\[/math]
.
La Superficie Totale del Solido si ottiene sommando:
Area Base del Cilindro (sotto)
Area Laterale del Cilindro
Area Laterale del Cono
Corona Circolare (sopra) che si trova sottraendo l'Area Base del Cono dall'Area Base del Cilindro, perché la Base del Cono è più piccola della Base del Cilindro.
A te questi conticini.
.
Fammi sapere se è chiaro.
Carlo