Argomenti senza collocazione specifica!

Federico7771
Salve a tutti... Volevo sapere se qualcuno sa dove posso trovare alcuni argomenti che mi sembra non abbiano una collocazione specifica in quanto su certi testi sono presenti ed in altri no oppure sono solo accennati... Mi riferisco ad argomenti come le varie norme, norme di applicazioni e di matrici(spettrale, di frobenius... ecc), tensori(questi se non mi sbaglio si fanno in geometria differenziale) e derivate di matrici...
Cioè argomenti di algebra lineare ed analisi 2 che non vengono sempre affrontati in maniera organica nei suddetti corsi o nei relativi libri(o almeno per i miei corsi è stato così)...

Sicuramente sui grandi classici questi argomenti sono trattati (es. rudin) ma letture più tranquille esistono? Anche delle dispense vanno bene!

Risposte
Emar1
Norme di operatori lineari le trovi su un qualsiasi testo di analisi funzionale in cui si trattino gli spazi di Banach. Nel caso particolare delle norme di matrici ti consiglio qualche testo di analisi numerica.

I tensori sono argomento di geometria differenziale ma per solo comprendere la definizione moderna di tensore bisogna sgobbare un bel po'. Il consiglio (datomi da altri utenti di questo forum) è quello di studiarne i tratti essenziali in una visione classica. Vedi questo per esempio: http://samizdat.mines.edu/tensors/ShR6b.pdf

Per "derivate di matrici" che intendi? Derivate rispetto ad una parametro o derivazione dell'applicazione lineare associata? Nel primo caso non c'è nulla da dire se non che è definita per componenti, nel secondo caso la derivata di un'applicazione lineare è la matrice che la rappresenta.

Federico7771
Intendo derivata definita per componenti... Lo so che non è nulla di che ma è uscita come un fungo porcino durante meccanica razionale e volevo sapere se questo come altri argomenti avevano una collocazione specifica a me sconosciuta...

Ma i tensori si trattano in corsi avanzati di geometria differenziale, giusto? Non i quelli della triennale?
Grazie per la lettura comunque ;-)

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.