Le carte da voltare
Sopra il tavolo di un mago sono appoggiate quattro carte. Su ogni faccia di ciascuna carta è scritto un numero intero positivo. I numeri delle facce scoperte sono i seguenti:
1° carta: 3
2° carta: 4
3° carta: 5
4° carta: 6.
Il mago afferma che, se in una delle due facce di una carta è scritto un numero pari, allora nella faccia opposta di quella carta c'è un multiplo di 3. Per controllare se il mago dice il vero, quali carte dovranno essere rovesciate? (Ovviamente non tutte). Motivare la risposta.
Questo quesito è stato assegnato in una gara matematica. Sorprendentemente, solo 6 squadre su 82 hanno risposto correttamente!
1° carta: 3
2° carta: 4
3° carta: 5
4° carta: 6.
Il mago afferma che, se in una delle due facce di una carta è scritto un numero pari, allora nella faccia opposta di quella carta c'è un multiplo di 3. Per controllare se il mago dice il vero, quali carte dovranno essere rovesciate? (Ovviamente non tutte). Motivare la risposta.
Questo quesito è stato assegnato in una gara matematica. Sorprendentemente, solo 6 squadre su 82 hanno risposto correttamente!
Risposte
La prima carta e la quarta. o la quarta e poi la prima?
Riprova, sarai più fortunato!
EDIT
mannaccia!
ci sono diverse teorie:
1°) 3 - 6 (non era quella)
2°) 5 - 3 (probabile)

ci sono diverse teorie:
1°) 3 - 6 (non era quella)
2°) 5 - 3 (probabile)

mmmh hai ragione:
perchè:
5 + 4 = 9
9 = multiplo di 3
perchè 3*3=9
forse ci siamo Kroldar
perchè:
5 + 4 = 9
9 = multiplo di 3
perchè 3*3=9
forse ci siamo Kroldar

No kroldar!
Ancora non ci siamo!
Adesso non intervengo più, cosi' ciascuno, se ha voglia, dice la sua.
Ancora non ci siamo!
Adesso non intervengo più, cosi' ciascuno, se ha voglia, dice la sua.
Mi ero accorto dell'errore e subito ho cancellato il vecchio messaggio.
Andiamo con ordine...
dietro la prima carta può esserci qualunque cosa quindi non va girata
dietro la seconda deve esserci un multiplo dispari di 3 e va girata
dietro la terza non deve esserci un numero pari e va girata
dietro la quarta deve esserci un multiplo di 3 e va girata
Andiamo con ordine...
dietro la prima carta può esserci qualunque cosa quindi non va girata
dietro la seconda deve esserci un multiplo dispari di 3 e va girata
dietro la terza non deve esserci un numero pari e va girata
dietro la quarta deve esserci un multiplo di 3 e va girata
quini coprendole tutte e 3 rimane solo la prima carta che ha valore 3 giusto?
Esatto, l'unica da non scoprire secondo me è la prima.
Era il primo problema (forse il secondo) della gara a squadre regionale dell'anno scorso. La mia squadra lo ha sbagliato se non ricordo male, ce ne siamo accorti poco dopo la consegna 
Imho kroldar ha ragione

Imho kroldar ha ragione

Secondo me dovremmo girare:
1) la carta con il 3 non va girata ( peche' la verita' della tesi non implica la verita' dell'ipotesi);
2) la carta con il 4 va girata per verificare che sul retro ci sia un numero multiplo di 3;
3) la carta con il 5 va girata per verificare che sul retro non ci sia un numero pari;
4) la carta con il 6 va girata per verificare che sul tretro ci sia un numero multiplo di 6 (un numero pari che sia anche un multiplo di 3).
Ma mi viene il dubbio di aver capito male il testo perche' io ho capito che se su una faccia di una carta c'e' un numero pari sull'altra c'e' un multiplo di 3; e' giusto?
1) la carta con il 3 non va girata ( peche' la verita' della tesi non implica la verita' dell'ipotesi);
2) la carta con il 4 va girata per verificare che sul retro ci sia un numero multiplo di 3;
3) la carta con il 5 va girata per verificare che sul retro non ci sia un numero pari;
4) la carta con il 6 va girata per verificare che sul tretro ci sia un numero multiplo di 6 (un numero pari che sia anche un multiplo di 3).
Ma mi viene il dubbio di aver capito male il testo perche' io ho capito che se su una faccia di una carta c'e' un numero pari sull'altra c'e' un multiplo di 3; e' giusto?