Integral - very simple

_luca.barletta
Compute

$int_(-infty)^(+infty) (sinx/x)^(10)cos(1000x)dx$

Risposte
Kroldar
Uhmm... I found this number:

$138826588/(9! 2^10) pi$

or equivalently

$34706647/(9! 2^8) pi$

That's too strange... I think that's a well-known kind of number, but I'm not sure of that :?

SonjaKovaleskaja
i don't think so...

ilincasebastian
-1/x<=(sen x)/x<=1/x
1<=cos1000x<=1
so integral is 0

_luca.barletta
Forget it, try to answer to this: given $f(x)=(sinx/x)^10cosx$ calculate $F(0)$

mircoFN1
"luca.barletta":
No, I don't.


Why don't you?

mircoFN1
Sorry but I don't understand:

$int_(-infty)^(+infty) (sinx/x)^(10)cos(x)dx = 0$

Bye

_luca.barletta
I've chosen a function a little bit pathological. At this point the question becomes: find $F(0)$.

_luca.barletta
No, I don't.

mircoFN1
$int_(-infty)^(+infty) (sinx/x)^(10)cos(1000x)dx = int_(-infty)^(0) (sinx/x)^(10)cos(1000x)dx+int_(0)^(infty) (sinx/x)^(10)cos(1000x)dx= -int_(0)^(infty) (sinx/x)^(10)cos(1000x)dx+int_(0)^(infty) (sinx/x)^(10)cos(1000x)dx=0$


do you agree?

_luca.barletta
A month later... I post the faster solution:

recall the following property of the Fourier transformation:

$int_(-infty)^(+infty) f(x)dx=F(0)$

where F(y) denote the Fourier transform of f(x).
We have a passband function $f(x)=(sinx/x)^(10)cos(1000x)$, that is $F(0)~=0$, so

$int_(-infty)^(+infty) f(x)dx~=0$

_luca.barletta
...an other way faster than "per parti"?

_luca.barletta
Ok. An other way to solve the same problem?

_nicola de rosa
"luca.barletta":
Compute
-
$int_(-infty)^(+infty) (sinx/x)^(10)cos(1000x)dx$

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.