Integral
1)Prove that $sum_{k=0}^{+infty}1/(2k+1)^2=pi^2/8
2)Compute $int_{0}^{1}(lnx)/(x^2-1)dx$
2)Compute $int_{0}^{1}(lnx)/(x^2-1)dx$
Risposte
My way:
$sum_{k=0}^{+infty}x^(2k)=1/(1-x^2)$ $0<=x<1$ (our case)
So
$int_{0}^{1}lnx/(x^2-1)dx=int_{0}^{1}lnx*(-sum_{k=0}^{+infty}x^(2k))dx$
We can exchange two signs , integral and series and so
$int_{0}^{1}lnx/(x^2-1)dx=sum_{k=0}^{+infty}int_{0}^{1}(-x^(2k))*lnxdx$
Now per parti
$int_{0}^{1}(-x^(2k))*lnxdx=[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+int_{0}^{1}x^(2k+1)/(2k+1)*1/xdx$=
$[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+int_{0}^{1}x^(2k)/(2k+1)dx$=
$[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+[x^(2k+1)/((2k+1)^2)]_{0}^{1}$
Now the first part of integral is null $AAk=0,1,2,3..$ for $x=0$ and $x=1$ while the second part $AAk=0,1,2,3..$ is null for $x=0$ and not null for $x=1$ and that is
$int_{0}^{1}(-x^(2k))*lnxdx=1/(2k+1)^2$ $AAk=0,1,2,3..$ and
$int_{0}^{1}lnx/(x^2-1)dx=sum_{k=0}^{+infty}1/(2k+1)^2=pi^2/8$ remembering the first result.
$sum_{k=0}^{+infty}x^(2k)=1/(1-x^2)$ $0<=x<1$ (our case)
So
$int_{0}^{1}lnx/(x^2-1)dx=int_{0}^{1}lnx*(-sum_{k=0}^{+infty}x^(2k))dx$
We can exchange two signs , integral and series and so
$int_{0}^{1}lnx/(x^2-1)dx=sum_{k=0}^{+infty}int_{0}^{1}(-x^(2k))*lnxdx$
Now per parti
$int_{0}^{1}(-x^(2k))*lnxdx=[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+int_{0}^{1}x^(2k+1)/(2k+1)*1/xdx$=
$[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+int_{0}^{1}x^(2k)/(2k+1)dx$=
$[-x^(2k+1)/(2k+1)lnx]_{0}^{1}+[x^(2k+1)/((2k+1)^2)]_{0}^{1}$
Now the first part of integral is null $AAk=0,1,2,3..$ for $x=0$ and $x=1$ while the second part $AAk=0,1,2,3..$ is null for $x=0$ and not null for $x=1$ and that is
$int_{0}^{1}(-x^(2k))*lnxdx=1/(2k+1)^2$ $AAk=0,1,2,3..$ and
$int_{0}^{1}lnx/(x^2-1)dx=sum_{k=0}^{+infty}1/(2k+1)^2=pi^2/8$ remembering the first result.
I haven't got a complete solution. Only tell me if I'm on the right way.
$int_0^1 ln(x)/(x^2-1) dx = int_0^1 sum_(n=1)^(+infty) (-1)^(n+1)/n (x-1)^(n-1)/(x+1) dx$
$= sum_(n=1)^(+infty) (-1)^(n+1)/n int_0^1 (x-1)^(n-1)/(x+1) dx$
Now, with the sostitution $x-1=t$:
$sum_(n=1)^(+infty) (-1)^(n+1)/n int_(-1)^0 t^(n-1)/(t+2) dt$
Compute one step of the integral:
$int t^(n-1)/(t+2) dt=t^n/(2n) -1/2int t^n/(t+2) dt -1/(2n)$
Expliciting with respect to the integral on the right side of the equality:
$int_(-1)^0 t^n/(t+2) dt = (-1)^(n+1)/n -2int_(-1)^0 t^(n-1)/(t+2) dt$
Let denote $I(n)$ as:
$I(n) = int_(-1)^0 t^n/(t+2) dt$
We have just found the recursion:
${(I(n) = (-1)^(n+1)/n -2I(n-1)),(I(0)=ln2):}$
We need of $I(n-1)$, and with a little "brain-work" we get:
$I(n-1) = sum_(j=1)^(n-1) (-2)^(n-j+1)/j + (-2)^(n-1)ln2$
And now? Have you followed the same way?
$int_0^1 ln(x)/(x^2-1) dx = int_0^1 sum_(n=1)^(+infty) (-1)^(n+1)/n (x-1)^(n-1)/(x+1) dx$
$= sum_(n=1)^(+infty) (-1)^(n+1)/n int_0^1 (x-1)^(n-1)/(x+1) dx$
Now, with the sostitution $x-1=t$:
$sum_(n=1)^(+infty) (-1)^(n+1)/n int_(-1)^0 t^(n-1)/(t+2) dt$
Compute one step of the integral:
$int t^(n-1)/(t+2) dt=t^n/(2n) -1/2int t^n/(t+2) dt -1/(2n)$
Expliciting with respect to the integral on the right side of the equality:
$int_(-1)^0 t^n/(t+2) dt = (-1)^(n+1)/n -2int_(-1)^0 t^(n-1)/(t+2) dt$
Let denote $I(n)$ as:
$I(n) = int_(-1)^0 t^n/(t+2) dt$
We have just found the recursion:
${(I(n) = (-1)^(n+1)/n -2I(n-1)),(I(0)=ln2):}$
We need of $I(n-1)$, and with a little "brain-work" we get:
$I(n-1) = sum_(j=1)^(n-1) (-2)^(n-j+1)/j + (-2)^(n-1)ln2$
And now? Have you followed the same way?
can nobody solve the integral?
"cheguevilla":
"seguent" è biscardiano...
Only in English, please

the seguent holdsthe following...
"seguent" è biscardiano...
Correct.
Only the integral remains. have you the solution? I wait for you.
Only the integral remains. have you the solution? I wait for you.
1) Consider the "triangular wave" function:
$f(x)=|x|={(x,,0<=x<=pi),(-x,,-pi<=x<0):}$
and such as $f(x)=f(x+2kpi), kinZZ$.
Since f(x) is even, we can compute its cosine transformation:
$a_0=2/piint_0^pi f(x)dx = pi$
$a_k = 2/piint_0^pi f(x)cos(kx)dx = {(0,,k=2n , ninNN),(-4/(k^2pi),,k=2n+1 , ninNN):}$
so we have:
$pi/2-4/pisum_(n=0)^(+infty) cos((2n+1)x)/(2n+1)^2$
Note that this result is consistent thank to the Dirichlet's th.
In particular, being $f(x)=x, x in [0,pi]$, we can write:
$x = pi/2-4/pisum_(n=0)^(+infty) cos((2n+1)x)/(2n+1)^2 0<=x<=pi$
and from the position $x=0$ we get
$0=pi/2-4/pisum_(n=0)^(+infty) 1/(2n+1)^2$
that is
$sum_(n=0)^(+infty) 1/(2n+1)^2 = pi^2/8$
2) Of course the following holds:
$int_{0}^{1}(lnx)/(x^2-1)dx=pi^2/8$
I'm just finding an elegant way to put down all the formulas...
Excuse for my english. I've taken some lessons from Biscardi.
$f(x)=|x|={(x,,0<=x<=pi),(-x,,-pi<=x<0):}$
and such as $f(x)=f(x+2kpi), kinZZ$.
Since f(x) is even, we can compute its cosine transformation:
$a_0=2/piint_0^pi f(x)dx = pi$
$a_k = 2/piint_0^pi f(x)cos(kx)dx = {(0,,k=2n , ninNN),(-4/(k^2pi),,k=2n+1 , ninNN):}$
so we have:
$pi/2-4/pisum_(n=0)^(+infty) cos((2n+1)x)/(2n+1)^2$
Note that this result is consistent thank to the Dirichlet's th.
In particular, being $f(x)=x, x in [0,pi]$, we can write:
$x = pi/2-4/pisum_(n=0)^(+infty) cos((2n+1)x)/(2n+1)^2 0<=x<=pi$
and from the position $x=0$ we get
$0=pi/2-4/pisum_(n=0)^(+infty) 1/(2n+1)^2$
that is
$sum_(n=0)^(+infty) 1/(2n+1)^2 = pi^2/8$
2) Of course the following holds:
$int_{0}^{1}(lnx)/(x^2-1)dx=pi^2/8$
I'm just finding an elegant way to put down all the formulas...
Excuse for my english. I've taken some lessons from Biscardi.