Approximation of convex functions
Let $f:[0,1]\to RR$ be a continuous convex function.
Given $n\in NN$, let $x_i = i/n$, $i=0,...,n$ be a partition of $[0,1]$, and let $g_n$ be the piecewise affine functions such that
$g_n(x_i) = f(x_i)$ for every $i=0,...,n$, and $g_n$ is affine on each interval $[x_{i-1}, x_{i}]$, $i=1,...,n$.
1. (Easy) Prove that for every $\epsilon>0$ there exists $N\in NN$ such that
$|f(x)-g_n(x)| < \epsilon$ for every $x\in [0,1]$, for every $n\ge N$.
2. (Not so easy) Show that there exist numbers $a, b_0\in RR$, $b_1,..., b_n\ge 0$ such that
$g_n(x) = a + b_0 x + \sum_{i=1}^n b_i |x-x_i|$, for every $x\in [0,1]$.
Given $n\in NN$, let $x_i = i/n$, $i=0,...,n$ be a partition of $[0,1]$, and let $g_n$ be the piecewise affine functions such that
$g_n(x_i) = f(x_i)$ for every $i=0,...,n$, and $g_n$ is affine on each interval $[x_{i-1}, x_{i}]$, $i=1,...,n$.
1. (Easy) Prove that for every $\epsilon>0$ there exists $N\in NN$ such that
$|f(x)-g_n(x)| < \epsilon$ for every $x\in [0,1]$, for every $n\ge N$.
2. (Not so easy) Show that there exist numbers $a, b_0\in RR$, $b_1,..., b_n\ge 0$ such that
$g_n(x) = a + b_0 x + \sum_{i=1}^n b_i |x-x_i|$, for every $x\in [0,1]$.
Risposte
OK Leo!

My try for 1bis.
... Just to use convexity in 1. too. 
1 bis. Show that for each [tex]$\varepsilon >0$[/tex] there exists [tex]$N\in \mathbb{N}$[/tex] s.t. for all [tex]$n\geq N$[/tex] and [tex]$x\in [0,1]$[/tex] we have [tex]$0\leq f(x)-g_n(x)<\varepsilon$[/tex].

1 bis. Show that for each [tex]$\varepsilon >0$[/tex] there exists [tex]$N\in \mathbb{N}$[/tex] s.t. for all [tex]$n\geq N$[/tex] and [tex]$x\in [0,1]$[/tex] we have [tex]$0\leq f(x)-g_n(x)<\varepsilon$[/tex].
Hello!
Here there's my try for 1).
Here there's my try for 1).