A very nice integral
solve $int_(-pi)^(pi)sin((1/2+n)t)/(2sin(t/2))dt$ with $n\in\NN$.
Risposte
This is completeley insane
"fu^2":
solve $int_(-pi)^(pi)sin((1/2+n)t)/(2sin(t/2))dt$ with $n\in\NN$.
Oh my God...It's the first time I see that!!! It's something of soprannatural...
"fu^2":
very good elgivio, this is beautiful proof!![]()
Thank you. But now, for God's sake, change the title of the topic in "A very nice integral"!!

elgivio
very good elgivio, this is beautiful proof!
ps in the first passage there is an error in the sum, but i think that it is a "svista"
now the integral is very simple !

ps in the first passage there is an error in the sum, but i think that it is a "svista"

now the integral is very simple !
$1/2+sum_(k=1)^ncos(kt)=-1/2+sum_(k=0)^n cos(kt)=-1/2+Re[sum_(k=0)^n e^(ikt)]=-1/2+Re[(e^(it(n+1))-1)/(e^(it)-1)]$
$=-1/2+Re[(e^(i (n+1)/2 t))/(e^(i t/2)) (e^(i (n+1)/2 t)-e^(-i (n+1)/2 t))/(e^(i t/2)-e^(-i t/2))]=-1/2+(sin((n+1)/2 t))/(sin(t/2)) Re[(e^(i (n+1)/2 t))/(e^(i t/2))]$
$=-1/2+(sin((n+1)/2 t) cos(n/2 t))/(sin(t/2))=(2sin(n/2 t + t/2)cos(n/2 t) - sin(t/2))/(2 sin(t/2))=(sin[(n+1/2)t])/(2sin(t/2))$.
$=-1/2+Re[(e^(i (n+1)/2 t))/(e^(i t/2)) (e^(i (n+1)/2 t)-e^(-i (n+1)/2 t))/(e^(i t/2)-e^(-i t/2))]=-1/2+(sin((n+1)/2 t))/(sin(t/2)) Re[(e^(i (n+1)/2 t))/(e^(i t/2))]$
$=-1/2+(sin((n+1)/2 t) cos(n/2 t))/(sin(t/2))=(2sin(n/2 t + t/2)cos(n/2 t) - sin(t/2))/(2 sin(t/2))=(sin[(n+1/2)t])/(2sin(t/2))$.
yes, the result is ok! but i don't know the residue's theory...
In fact exist a trick which you can resolve this integral in one line using the knowledge of analysis one...
proof this lemma
In fact exist a trick which you can resolve this integral in one line using the knowledge of analysis one...


proof this lemma
The result for $n=0$ is trivial, so let's consider $n > 0$.
$int_(-pi)^(pi)sin((1/2+n)t)/(2sin(t/2))dt = int_(-pi)^(pi)sin((2n+1)/2t)/(2sin(t/2))dt$
To semplify the expression, let's assume $2n+1=k$ and $t/2=u$, so we obtain
$int_(-pi)^(pi)sin((2n+1)/2t)/(2sin(t/2))dt = int_(-pi/2)^(pi/2)sin(ku)/(sin(u))du$
Now we can verify that $u=pi/2$ is a point of simmetry for the function $f(u)=sin(ku)/(sin(u))$, in fact $f(pi/2-u)=f(pi/2+u)$, so
$int_(-pi/2)^(pi/2)sin(ku)/(sin(u))du = 1/2 int_(-pi/2)^(3pi/2)sin(ku)/(sin(u))du$
and if we note that $f(u)$ is periodical of $2pi$, we can conclude that
$1/2 int_(-pi/2)^(3pi/2)sin(ku)/(sin(u))du = 1/2 int_(0)^(2pi)sin(ku)/(sin(u))du$
Let's assume $z=e^(ju)$, so the integral becomes
$1/2 int_(0)^(2pi)sin(ku)/(sin(u))du = 1/(2j) int_(|gamma|=1) (z^k-1/z^k)/(z-1/z) dz/z = 1/(2j) int_(|gamma|=1) ((z^(2k)-1)/z^k)/(z^2-1) dz = 1/(2j) int_(|gamma|=1) (z^(2k)-1)/((z^k)(z^2-1)) dz$
We can now conclude that
$1/(2j) int_(|gamma|=1) (z^(2k)-1)/((z^k)(z^2-1)) dz = 1/(2j) (pijR[1]+pijR[-1]+2pijR[0])$
where $R[u_0]$ is the residue in $u_0$.
But
$R[1] = R[-1] = 0$
so
$1/(2j) int_(|gamma|=1) (z^(2k)-1)/((z^k)(z^2-1)) dz = piR[0]$
The point $0$ is a pole of order $k$ and we have
$R[0] = 1/((k-1)!) lim_(zto0) [d^(k-1)/dz^(k-1) 1/(z^2-1)]$
The final result should be
$int_(-pi)^(pi)sin((1/2+n)t)/(2sin(t/2))dt = pi 1/(2n!) lim_(zto0) [d^(2n)/dz^(2n) 1/(z^2-1)] = pi$
$int_(-pi)^(pi)sin((1/2+n)t)/(2sin(t/2))dt = int_(-pi)^(pi)sin((2n+1)/2t)/(2sin(t/2))dt$
To semplify the expression, let's assume $2n+1=k$ and $t/2=u$, so we obtain
$int_(-pi)^(pi)sin((2n+1)/2t)/(2sin(t/2))dt = int_(-pi/2)^(pi/2)sin(ku)/(sin(u))du$
Now we can verify that $u=pi/2$ is a point of simmetry for the function $f(u)=sin(ku)/(sin(u))$, in fact $f(pi/2-u)=f(pi/2+u)$, so
$int_(-pi/2)^(pi/2)sin(ku)/(sin(u))du = 1/2 int_(-pi/2)^(3pi/2)sin(ku)/(sin(u))du$
and if we note that $f(u)$ is periodical of $2pi$, we can conclude that
$1/2 int_(-pi/2)^(3pi/2)sin(ku)/(sin(u))du = 1/2 int_(0)^(2pi)sin(ku)/(sin(u))du$
Let's assume $z=e^(ju)$, so the integral becomes
$1/2 int_(0)^(2pi)sin(ku)/(sin(u))du = 1/(2j) int_(|gamma|=1) (z^k-1/z^k)/(z-1/z) dz/z = 1/(2j) int_(|gamma|=1) ((z^(2k)-1)/z^k)/(z^2-1) dz = 1/(2j) int_(|gamma|=1) (z^(2k)-1)/((z^k)(z^2-1)) dz$
We can now conclude that
$1/(2j) int_(|gamma|=1) (z^(2k)-1)/((z^k)(z^2-1)) dz = 1/(2j) (pijR[1]+pijR[-1]+2pijR[0])$
where $R[u_0]$ is the residue in $u_0$.
But
$R[1] = R[-1] = 0$
so
$1/(2j) int_(|gamma|=1) (z^(2k)-1)/((z^k)(z^2-1)) dz = piR[0]$
The point $0$ is a pole of order $k$ and we have
$R[0] = 1/((k-1)!) lim_(zto0) [d^(k-1)/dz^(k-1) 1/(z^2-1)]$
The final result should be
$int_(-pi)^(pi)sin((1/2+n)t)/(2sin(t/2))dt = pi 1/(2n!) lim_(zto0) [d^(2n)/dz^(2n) 1/(z^2-1)] = pi$